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1. Overview

In this supplementary document, we present additional results to complement the paper. First, we provide the detailed
configurations and parameters of the proposed LapSRN. Second, we show the comparisons with the network architecture
of LAPGAN [3] and the adversarial loss training. We also provide analysis on different training datasets used in existing
methods. Third, we present the run time evaluation and more qualitative comparisons with the state-of-the-art algorithms.

2. Network Architectures

The proposed LapSRN consists of two branches:
o Feature extraction branch uses a cascade of convolutional neural networks to predict residual images at multiple scales.
e [mage reconstruction branch reconstructs high-resolution (HR) images in a coarse-to-fine manner.
Table 1 lists the detailed configurations of our 8 x model with depth d = 5 at each level. All the convolutional layers have
a stride of 1 and pad the feature maps with 1 pixel to keep the size of the feature maps unchanged at each level. All the
transposed convolutional layers upscale feature maps by 2 and crop the boundaries of feature maps by 1 pixel.

Table 1: Detailed configuration of the proposed LapSRN for the 8 x scale factor. “conv”” and “convt” denote the convolution
layers and transposed convolution layers, respectively.

Feature Extraction Branch Image Reconstruction Branch
Input Output Kernel size Output size Input Output Kernel size Output size
LR conv-0 3x3x1x64 16 X 16 x 64 LR convt-I1 4x4x1x1 32x32x1
conv-0 convl-1 3 x3x64x64 16 x 16 x 64 convt-F1 conv-R1 3x3x64x1 32x32x1

convl-1 convl-2 3x3x64x64 16 x 16 x 64 conv-11 & conv-R1 HR-2x element-wise sum 32x32x1
convl-2 convl-3 3x3x64x64 16 x 16 x 64
convl-3 convl-4 3 x3x64x64 16 x 16 x 64
convl-4 convl-5 3x3x64x64 16 x 16 x 64
convl-5 convt-F1 4 x4x64x64 32 x32x64

convt-F1 ~ conv2-1 3 x3x64x64 32 x32x64 HR-2x convt-12 4x4x1x1 64 x 64 x 1
conv2-1 conv2-2 3x3x64x64 32 x32x64 convt-F2 conv-R2 3x3x64x%x1 64 x 64 x 1
conv2-2 conv2-3 3 x3x64x64 32x32x64 conv-I12 & conv-R2  HR-4x element-wise sum 64 x 64 x 1
conv2-3 conv2-4 3 x3x64x64 32 x32x64
conv2-4 conv2-5 3x3x64x64 32 x32x64
conv2-5 convt-F2 4 x4 x64 x 64 64 x 64 x 64

convt-F2  conv3-1 3 x3x64x64 64 x 64 x 64 HR-4x convt-13 dx4x1x1 128 x 128 x 1
conv3-1 conv3-2 3x3x64x64 64 x 64 x 64 convt-F3 conv-R3 3x3x64x1 128 x 128 x 1
conv3-2 conv3-3 3 x3x64x64 64 x 64 x 64 conv-I3 & conv-R3 HR-8 x element-wise sum 128 x 128 x 1
conv3-3 conv3-4 3x3x64x64 64 x 64 x 64
conv3-4 conv3-5 3x3x64x64 64 x 64 x 64
conv3-5 convt-F3 4 x4x64x64 128 x 128 x 64
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3. Additional Analysis

In this section, we first show quantitative and qualitative comparisons between the network architecture of LAPGAN [3]
and the proposed LapSRN. We also extend the proposed method to incorporate the adversarial loss training. We then inves-
tigate the effect of using different training datasets for learning our model.

3.1. Comparison to the network architecture of LAPGAN

As described in the paper, the target applications of LAPGAN [3] and the proposed LapSRN are different. LAPGAN is a
generative model that synthesizes diverse natural images from random noise and sample inputs, while our LapSRN is a super-
resolution model that reconstructs accurate high-resolution images based on the input low-resolution images. Therefore, we
focus on comparing the network architectures for image super-resolution here. In what follows, we denote “LAPGAN” as
the generative network in [3].

Both LAPGAN and our LapSRN are inspired by the Laplacian pyramid framework. However, there are two main dif-
ferences. First, LAPGAN upsamples input images before applying convolution at each level, while our LapSRN extracts
features directly from the LR space and upscales images at the end of each level. Our network design effectively alleviates
the computational cost and increases the size of receptive fields. Second, the sub-networks of LAPGAN are independent,
while our LapSRN shares the feature representations from the lower scales to the finer scales. As a result, the residual images
at a higher level are predicted by a deeper network. The feature sharing at lower levels increases the non-linearity and the
network capacity to learn better mappings. We illustrate the architecture differences between LAPGAN and our LapSRN
in Figure 1.

To investigate the effect of using different network architectures, we train LAPGAN and our LapSRN for 4 x and 8 x SR
with the same training data and settings. We use 5 convolutional layers at each level and optimize both networks with the
Charbonnier loss function. We note that in [3] the sub-networks are independently trained. To provide a fair comparison, we
jointly train the entire network for LAPGAN and our LapSRN. Figure 2 shows the convergence curves (in terms of PSNR)
for both networks on SET14. We provide quantitative comparisons of image quality and run time on SETS, SET14 and
BSDS100 in Table 2. Under the same training setting, our method achieves more accurate reconstruction and faster speed
than that of LAPGAN. Figure 3 shows visual comparisons on SETS and SET14. Our LapSRN recovers accurate details for
both 4x and 8x SR.

(a) Generative net of LAPGAN [3] (b) LapSRN (ours)
Figure 1: Network architectures of the generative net of LAPGAN [3] and the proposed LapSRN.

Table 2: Quantitative comparisons between the generative network of LAPGAN [3] and the proposed LapSRN. Our LapSRN
achieves better quality and faster processing speed than LAPGAN.

SETS SET14 BSDS100
PSNR SSIM  Seconds | PSNR SSIM  Seconds | PSNR SSIM  Seconds

Method Scale

LAPGAN 4 3093 0.8744 0.0397 | 27.89 0.7633  0.0446 | 27.09 0.7195 0.0135
LapSRN 4 31.28 0.8800 0.0362 | 28.04 0.7675 0.0395 | 27.22 0.7238 0.0078
LAPGAN 8 25.85 0.7261 0.0478 | 2430 0.6170 0.0518 | 2446 0.5819 0.0110
LapSRN 8 26.09 0.7361 0.0376 | 24.42 0.6227 0.0427 | 24.53 0.5852 0.0107
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Figure 2: Convergence curves of LAPGAN and our LapSRN on SET14 for 4 x and 8 x SR, respectively.

(a) Ground Truth HR (PSNR / SSIM)
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(a) Ground Truth HR (PSNR / SSIM) (b) LAPGAN 8x (24.67/0.8142) (c) LapSRN 8x (24.81/0.8203)
Figure 3: Visual comparison between LAPGAN and the proposed LapSRN on SETS and SET14.



3.2. Adversarial training

In [3], training the Generative Adversarial Network (GAN) consists of optimizing two networks: a generative network
and a discriminative network. The generative network synthesizes realistic images from noise and sample inputs. The
discriminative network learns to distinguish between the real images and the sampled images drawn from the generative
network. The training is done by alternatively minimizing the cross-entropy loss functions. We refer readers to [3, 6] for
more details. Similar training procedure has been applied to face images super-resolution [ 14], which demonstrates promising
results on aligned face images for 8 x SR.

We demonstrate that the proposed LapSRN can be extended to incorporate the adversarial training. We treat our LapSRN
as a generative network and design a discriminative network which takes an image with a spatial resolution 128 x 128 as
input. The discriminative network consists of four convolutional layers with a stride of 2, two fully connected layers and
one sigmoid layer to generate a scalar probability for distinguishing between real images and generated images from the
generative network. We find that it is difficult to obtain accurate SR images by minimizing the cross-entropy loss functions
only. As aresult, we include the pixel-wise reconstruction loss function to enforce the similarity between the input LR images
and the corresponding ground truth HR images. The overall loss function is a summation of the Charbonnier loss and the
cross-entropy loss.

We show two visual results in Figure 4 for 4x SR. The network with the adversarial training produces more realistic
results on regions of irregular structures, e.g., hairs, grass, and feathers. However, the predicted results may not be faithful
with respect to the ground truth high-resolution images.

(a) Ground Truth HR (PSNR / SSIM) (b) LapSRN + adv. (28.87/0.7501) (c) LapSRN (30.41 / 0.8060)

Figure 4: Visual comparison between results trained with and without the adversarial training on 4x SR.



3.3. Training datasets

Table 3 provides the implementation details of the state-of-the-art methods and the proposed LapSRN. We note that
different approaches use different datasets for training. It is thus unclear which datasets are more suitable for training SR
models. Does using more training data always improve the performance? In this section, we aim at validating the effect of
three commonly used datasets in SR: T91 [13], BSDS200 [1] and General100 [5].

We train the proposed LapSRN (using depth d = 5, 4x SR) with the following combinations of training datasets: (1)
T91, (2) T91 + BSDS200, (3) T91 + General100 and (4) T91 + BSDS200 + General100. We plot the convergence curves
on SET14 in Figure 5 and provide the quantitative results in Table 4. The quantitative results show that training with the
91 images from T91 already provides decent performance. Training with an additional set of images in BSDS200 does not
improve the performance on most datasets except the BSDS100 testing set. Training with T91 and General100 leads to the
best performance. We attribute the improvement to the fact that the T91 and General100 datasets contain images with sharp
edges and less textured regions, which are suitable for learning SR models. We note that using more training data does not
guarantee to obtain better performance since it may increase the difficulty for networks to fit the training data.

Table 3: Implementation details of the evaluated algorithms and the proposed approach.

Algorithm Implementation CPU/GPU Training Dataset
A+ [11] MATLAB CPU T91 [13]
SCN [12] MATLAB CPU T91 [13]
DRCN [9] MATLAB GPU T91 [13]
SRCNN [4] MATLAB GPU ImageNet [2]
FSRCNN [5] MATLAB GPU T91 [13] + General100 [4]
SelfExSR [7] MATLAB CPU None
RFL [10] MATLAB CPU T91 [13] + BSDS200 [1]
VDSR [8] MATLAB GPU T91 [13] + BSDS200 [1]
DRCN [9] MATLAB GPU T91 [13]
LapSRN (ours) MATLAB GPU T91 [13] + BSDS200 [1]

Table 4: Quantitative comparisons between the networks trained on different datasets.

Training dataset SETS SET14 BSDS100 URBAN100 MANGA100
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
T91 31.29 0.880 | 28.04 0.767 | 27.18 0.722 | 2495 0.746 | 28.59 0.880
T91 + BSDS200 31.28 0.880 | 28.04 0.768 | 27.22 0.724 | 25.01 0.747 | 28.64 0.882
T91 + General100 31.32 0.880 | 28.10 0.768 | 27.21 0.723 | 25.04 0.748 | 28.79 0.883
T91 + BSDS200 + General1l00 | 31.20 0.879 | 28.07 0.768 | 27.21 0.723 | 25.01 0.745 | 28.69 0.882
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Figure 5: Convergence curves of networks trained on different datasets.



4. Runtime Evaluation

We provide quantitative comparisons regarding the execution time with 8 state-of-the-art SR algorithms: A+ [11], SR-
CNN [4], FSRCNN [5], SelfExSR [7], RFL [10], SCN [12], VDSR [8] and DRCN [9].

We evaluate the execution time of each algorithm on a machine with 3.4 GHz Intel i7 CPU (64G RAM) and Nvidia Titan
X GPU (12G Memory). We take three LR images with spatial resolutions of 64 x 64, 128 x 128 and 256 x 256, and upscale
by 2x, 4x and 8, respectively. We test each image for 10 times and report the averaged runtime in Table 5. In Figure 6,
we focus on comparisons between CNN-based methods: SRCNN, FSRCNN, VDSR and our LapSRN. FSRCNN is the
fastest algorithm since it applies convolution on LR images and has fewer network parameters. The runtime of SRCNN and
VDSR depends on the size of output images, while the speed of FSRCNN is determined by the size of input images. The
runtime of the proposed LapSRN mainly depends on the size of input images. Our LapSRN progressively upscales images
and applies more convolutional layers on larger scaling factors. The time complexity increases slightly with respect to the
target upsampling scales. However, the speed of LapSRN still performs favorably against SRCNN, VDSR and other existing
algorithms.

Table 6 summarizes the average frame rate (FPS) on SETS, SET14, BSDS100, URBAN100 and MANGA109 with the
scale factors 2, 4x and 8, respectively. Both FSRCNN [5], and our LapSRN achieve real-time speed (i.e., 24 frames per
second) on most datasets. While our network contains more convolutional layers than that in SRCNN, SCN and VDSR, we
super-resolve images efficiently due to the design of the pyramidal structure.

Table 5: Runtime evaluation with different sizes of input images. We note that SRCNN, VDSR, DRCN and our LapSRN run
out of the GPU memory when upsampling the image with the spatial resolution 256 x 256 for 8 x (the size of output images
is 2048 x 2048).

Input size 64 128 256
Output size 128 256 512 256 512 1024 512 1024 2048
Scale factor 2% 4x 8x 2% 4x 8% 2% 4x 8%
A+ [11] 0.01139 0.01656 0.03474 | 0.04646 0.06581 0.18079 | 0.19340 0.32775 1.67798
SRCNN [4] 0.00081 0.00195 0.00687 | 0.00228 0.00700 0.03026 | 0.00675 0.02988 N.A.
FSRCNN [5] | 0.00076 0.00076 0.00077 | 0.00077 0.00077 0.00077 | 0.00077 0.00077 0.00078
RFL [10] 0.02546 0.03164 0.07021 | 0.05256 0.10095 0.49087 | 0.16088 0.59435 2.61875
SCN [12] 0.01526 0.09404 0.34208 | 0.05806 0.35590 1.27679 | 0.27957 1.25322 6.08012
VDSR [8] 0.00169 0.00341 0.01329 | 0.00347 0.01324 0.05294 | 0.01326 0.05278 N.A.
DRCN [9] 0.01704 0.06620 0.10131 | 0.06520 0.31282 0.30750 | 0.30909 1.15490 N.A.
LapSRN (ours) | 0.00085 0.00166 0.00248 | 0.00085 0.00167 0.00251 | 0.00085 0.00168 N.A.
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Figure 6: Trade-off between runtime and size of input images. We fix the size of input images and perform 2x, 4x and 8 x
SR with SRCNN [4], FSRCNN [5], VDSR [8] and the proposed LapSRN, respectively.

(a) Fix size of input images to 64 x 64

(b) Fix size of input images to 128 x 128



Table 6: Comparison of the FPS (frames per second) on the 5 benchmark datasets with scale factors 2x, 4x and 8x. Red
color indicates the fastest algorithm and blue color indicates the second fastest algorithm. Both FSRCNN and our method
achieve real-time performance (i.e., 24 FPS) on most datasets.

Algorithm Scale SETS SET14 BSDS100 URBAN100 MANGA109
A+[11] 2 1.12 0.52 0.74 0.15 0.10
SRCNN [4] 2 24.70 22.92 39.50 9.03 6.53
FSRCNN [5] 2 31.04 53.86 98.20 47.23 34.48
SelfExSR [7] 2 0.02 0.01 0.01 0.00 0.00
RFL [10] 2 0.65 0.45 0.52 0.13 0.15
SCN [12] 2 1.19 0.85 1.19 0.24 0.17
VDSR [8] 2 11.01 6.46 10.00 2.12 1.71
DRCN [9] 2 0.70 0.37 0.59 0.10 0.08
LapSRN (ours) 2 30.20 40.00 97.36 16.81 85.32
A+[11] 4 2.86 1.62 243 0.49 0.41
SRCNN [4] 4 21.74 22.27 40.13 9.95 7.13
FSRCNN [5] 4 31.61 56.58 101.54 53.95 55.23
SelfExSR [7] 4 0.04 0.02 0.03 0.00 0.00
RFL [10] 4 1.97 1.21 1.64 0.42 0.34
SCN [12] 4 1.38 0.87 1.19 0.31 0.25
VDSR [8] 4 10.71 6.59 9.91 2.15 1.76
DRCN [9] 4 0.80 0.37 0.59 0.10 0.08
LapSRN (ours) 4 25.49 25.46 54.35 12.40 47.63
A+[11] 8 5.79 2.84 4.31 0.80 0.64
SRCNN [4] 8 20.92 17.69 40.13 9.81 7.17
FSRCNN [5] 8 34.10 63.28 104.46 71.67 71.95
SelfExSR [7] 8 0.03 0.01 0.02 0.00 0.00
RFL [10] 8 2.54 1.61 2.25 0.47 0.33
SCN [12] 8 0.79 0.53 0.68 0.21 0.19
VDSR [8] 8 10.58 6.50 10.13 2.15 1.77
LapSRN (ours) 8 24.02 23.40 50.44 10.54 33.09




5. More Quantitative Comparisons

Due to the network design of the proposed LapSRN, the scale factors for training are limited to the power of 2, e.g., 2X,
4x or 8x. However, our LapSRN can perform SR to arbitrary scales by first upsampling input images to a larger scale and
then downsampling the output images to the desired resolution. The quantitative results for 2, 4x and 8 x SR are presented
in the main paper. In Table 7, we show the numerical results for 3x SR by using our 4 x model. We note that we do not use
any 3x SR images to optimize our network. However, our 4 x model provides comparable performance with state-of-the-art
methods thanks to the deeply supervised training.

Table 7: Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM/IFC for scale factors 3 x. Red text
indicates the best and blue text indicates the second best performance.

Algorithm  Scale

SETS
PSNR / SSIM / IFC

SET14
PSNR / SSIM / IFC

BSDS100
PSNR / SSIM / IFC

URBAN100
PSNR / SSIM / IFC

MANGA109
PSNR / SSIM / IFC

Bicubic

A+ [11]
SRCNN [4]
FSRCNN [5]
SelfExSR [7]
RFL [10]

SCN [12]
VDSR [8]
DRCN [9]
LapSRN (ours)

L LW W W W WWWWW

30.39/0.868 / 3.596
32.60/0.908 /4.979
32.76/0.908 / 4.682
33.15/0.913/4.971
32.63/0.908 /4911
32.45/0.905 /4.956
32.60/0.907 / 4.321
33.66/0.921/5.088
33.82/0.922 /5.202
33.78/0.921/5.194

27.64/0.776 / 3.491
29.24/0.821/ 4.545
29.41/0.823 / 4.373
29.53/0.826 / 4.569
29.33/0.823 /4.505
29.15/0.819/4.532
29.24/0.819 / 4.006
29.77/0.834 / 4.606
29.76 /0.833 / 4.686
29.87/0.833 / 4.665

27.21/0.740/ 3.168
28.30/0.784 / 4.028
28.41/0.787 / 3.879
28.52/0.790 / 4.061
28.29/0.785/3.922
28.22/0.782/4.023
28.32/0.782/3.553
28.83/0.798 / 4.043
28.80/0.797 / 4.070
28.81/0.797 / 4.057

24.46/0.736 / 3.661
26.05/0.798 / 4.883
26.24/0.800/ 4.630
26.42/0.807 /4.878
26.45/0.809 / 4.988
25.87/0.791/4.781
26.21/0.801/4.253
27.14/0.829 /5.045
27.15/0.828 / 5.187
27.06/0.827/5.168

26.98/0.858 /3.521
29.91/0.911/4.880
30.58/0.913/4.698
31.09/0.920/4.912
27.57170.820/2.193
29.60/0.904 / 4.758
30.21/0.912/4.302
31.99/0.933/5.389
32.29/0.935/5.564
32.19/0.934/5.406




6. Qualitative Comparisons

In this section, we provide more visual comparisons with state-of-the-art methods on BSDS 100, URBAN100, MANGA109
and the real-world historical photos. The complete results on all benchmark datasets for 2x, 4x and 8 x SR are provided on
our project website http://v1labl.ucmerced.edu/~wlai24/LapSRN.

6.1. Visual comparisons on BSDS100 with 4x SR

SCN [12]

VDSR [8] DRCN [9] LapSRN (ours)

Figure 7: Visual comparison for 4x SR on BSDS100.
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VDSR [8] DRCN [9] LapSRN (ours)

Figure 8: Visual comparison for 4x SR on BSDS100.
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Figure 9: Visual comparison for 4x SR on BSDS100.



6.2. Visual comparisons on Urban100 with 4x SR
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VDSR [8] DRCN [9] LapSRN (ours)

Figure 10: Visual comparison for 4x SR on URBAN100.
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A+[11] SRCNN [4]

Bicubic
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SelfExSR [7] RFL [10] SCN [12]

FSRCNN [5]

DRCN [9] LapSRN (ours)
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Figure 12: Visual comparison for 4x SR on URBAN100.
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VDSR [8] DRCN [9] LapSRN (ours)

Figure 13: Visual comparison for 4x SR on URBAN100.



VDSR [8] DRCN [9] LapSRN (ours)

Figure 14: Visual comparison for 4 x SR on URBAN100.



SelfExSR [7] RFL [10] SCN [12]

FSRCNN [5]

DRCN [9] LapSRN (ours)

VDSR [8]

Figure 15: Visual comparison for 4x SR on URBAN100.



VDSR [8] DRCN [9] LapSRN (ours)

Figure 16: Visual comparison for 4x SR on URBAN100.
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Figure 17: Visual comparison for 4x SR on URBAN100.



6.3. Visual comparisons on Mangal09 with 4x SR
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VDSR [8] DRCN [9] LapSRN (ours)

Figure 18: Visual comparison for 4x SR on MANGA109.
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Figure 19: Visual comparison for 4x SR on MANGA109.
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Figure 20: Visual comparison for 4x SR on MANGA109.
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Figure 21: Visual comparison for 4x SR on MANGA109.
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Figure 22: Visual comparison for 4x SR on MANGA109.
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VDSR [8] DRCN [9] LapSRN (ours)

Figure 23: Visual comparison for 4x SR on MANGA109.
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Figure 24: Visual comparison for 4x SR on MANGA109.



VDSR [8] DRCN [9] LapSRN (ours)

Figure 25: Visual comparison for 4x SR on MANGA109.



VDSR [8] DRCN [9] LapSRN (ours)

Figure 26: Visual comparison for 4x SR on MANGA109.



6.4. Visual comparisons on BSDS100 with 8x SR
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Figure 27: Visual comparison for 8 x SR on BSDS100.
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Figure 28: Visual comparison for 8 x SR on BSDS100.
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Figure 29: Visual comparison for 8 x SR on BSDS100.
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Figure 30: Visual comparison for 8 x SR on BSDS100.



VDSR [8] LapSRN (ours)

Figure 31: Visual comparison for 8x SR on BSDS100.
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Figure 32: Visual comparison for 8 x SR on BSDS100.



6.5. Visual comparisons on Urban100 with 8x SR
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Figure 33: Visual comparison for 8 x SR on URBAN100.
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Figure 34: Visual comparison for 8 x SR on URBAN100.
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Figure 35: Visual comparison for 8 x SR on URBAN100.
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Figure 36: Visual comparison for 8 x SR on URBAN100.
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Figure 37: Visual comparison for 8 x SR on URBAN100.
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Figure 38: Visual comparison for 8 x SR on URBAN100.
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Figure 39: Visual comparison for 8 x SR on URBAN100.
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Figure 40: Visual comparison for 8 x SR on URBAN100.
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6.6. Visual comparisons on Mangal09 with 8§ < SR

VDSR [8] LapSRN (ours)

Figure 41: Visual comparison for 8 x SR on MANGA109.
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Figure 42: Visual comparison for 8 x SR on MANGA109.
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Figure 43: Visual comparison for 8 x SR on MANGA109.
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Figure 44: Visual comparison for 8 x SR on MANGA109.
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Figure 45: Visual comparison for 8 x SR on MANGA109.
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Figure 46: Visual comparison for 8 x SR on MANGA109.
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Figure 47: Visual comparison for 8 x SR on MANGA109.
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Figure 48: Visual comparison for 8 x SR on MANGA109.
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Figure 49: Visual comparison for 8 x SR on MANGA109.



6.7. Visual comparisons on real-world photos with 4x SR
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Figure 50: Visual comparison for 4x SR on real-world photos.
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Figure 51: Visual comparison for 4 x SR on real-world photos.
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Figure 52: Visual comparison for 4 x SR on real-world photos.
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Figure 53: Visual comparison for 4 x SR on real-world photos.
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Figure 54: Visual comparison for 4 x SR on real-world photos.
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